
Enumeration

Phong Nguyễn
http://www.di.ens.fr/~pnguyen

March 2017

http://www.di.ens.fr/~pnguyen

References

Joint work with:

Yoshinori Aono, published at EUROCRYPT
2017: « Random Sampling Revisited:
Lattice Enumeration with Discrete
Pruning ». Full version on eprint.

Nicolas Gama and Oded Regev, published
at EUROCRYPT 2010: « Lattice
Enumeration with Extreme Pruning ».

Schnorr’s Random Sampling [Sc03]

The records [KaTe,KaFu] used a secret
variant of RSR.

RSR is based on Random Sampling, which
is not well-understood, and which we
revisit.

Revisiting and Unifying
Schnorr’s Algorithms

Cylinder pruning

[SchnorrEuchner94,SchorrHorner95] but analysis not
satisfactory;

Revisited in [GNR10]: better description led to better
analysis, which led to much better performances.

Random sampling [Schnorr03, BuLu06, FuKa15, etc.]

Previous analyses arguably not satisfactory: gap
between analysis and experiments.

Discrete pruning [AoN17] generalizes it and provides a
[GNR10]-type analysis.

Summary

Enumeration

Enumeration with Pruning

Cylinder Pruning

Discrete Pruning or Box Pruning

Solving SVP
by

Enumeration

Enumeration
It is the simplest method to solve hard
lattice problems: SVP, CVP, etc. Unrelated to
bounds on Hermite’s constant, but used in
largest records.

Input: a lattice L and a small ball S⊆Rn s.t.
#(L∩S) is « small ».

Output: All points in L∩S.

Drawback: the running-time is typically
superexponential, much larger than #L∩S.

Enumeration
A) Reduce a basis.

B) Exhaustive search all vectors ≤ R by
enumerating all short vectors in projected
lattices.

Usually, B) is much more expensive than A).

If the basis is only LLL-reduced, B) costs .

[Kannan1983] showed that A) and B) can be done
in poly-time operations.

2O(d2)

2O(d lnd)

Enumeration

Idea: projecting a vector can only shorten
it.

Enumeration is a depth-first search of a
gigantic tree, to find a shortest vector.

The nb of tree nodes can
be ``predicted’’ with the

Gaussian heuristic
[HaSt07,GNR10]

More precisely…

Consider a lower-triangular matrix:

b1,1

b2,1 b2,2

b3,1 b3,2 b3,3

b4,1 b4,2 b4,3 b4,4

b5,1 b5,2 b5,3 b5,4 b5,5

x1

x2

x3

x4

x5

If norm ≤ R, then

(x5b5,5)2 ≤ R2

(x4b4,4+x5b5,4)2+
(x5b5,5)2 ≤ R2

…

So enumerate x5,
then x4, etc.

Remember Gram-Schmidt

From d linearly independent vectors,
GS constructs d orthogonal vectors:
the i-th vector is projected over
the orthogonal complement of the
first i-1 vectors.

~b?
1 =~b1

~b?
i =~bi�

i�1

∑
j=1
µi, j~b?

j

where µi, j =
h~bi,~b?

ji
k~b?

jk2

Remember Projections

Denote by πi the projection orthogonally
to b1,...,bi-1.

Then:

 bi* = πi(bi)

πi(L) is a lattice of dim d-i+1 whose
volume is vol(L)/(||b1*|| x ... x ||bd-i+1*||)
= vol(L)/vol(b1,...,bi-1).

Gram-Schmidt = Triangularization

If we take an appropriate orthonormal
basis, the matrix of the lattice basis
becomes triangular.0

BBBBB@

k~b⇤1k 0 0 . . . 0
µ2,1k~b⇤1k k~b⇤2k 0 . . . 0
µ3,1k~b⇤1kµ3,2k~b⇤2kk~b⇤3k . . . 0

...
µd,1k~b⇤1kµd,2k~b⇤2k . . . µd,d�1k~b⇤d�1kk~b⇤dk

1

CCCCCA

Exhaustive Search

Let (b1,b2,...bd) be a reduced basis of L.

Let x=x1b1+x2b2+...+xdbd be a shortest
vector of L.

Then ||πi(x)||≤R for 1≤i≤d, R=||b1|| or λ1(L).

||πd(x)||≤R implies: |xd|≤R/||bd*||

For each value of xd, ||πd-1(x)||≤R
implies that the integer xd-1 belongs to
an interval of “small” length.

Enumeration and Triangularization

Let x=x1b1+x2b2+...+xdbd be a shortest
vector of L.

Decompose x over the triangular
representation of L.

Then ||x||≤||b1|| implies: |xd|≤||b1||/||bd*||

And so on... each integer xi belongs to
an interval of “small” length.

Enumeration Tree

πd(x)
xd-1 xd-1

xd-1
πd(x)
xd-1

xd-1
...

πd-1(x) πd-1(x) πd-1(x) πd-1(x) πd-1(x)
xd-2 xd-2

xd xd xd

πd-2(x) πd-2(x)
...

x

Root

Leaves

Enumeration tree

Depth k contains all projected
lattice points ||πd+1-k(y)|| (y∈L) of
norm ≤ R.

The leaves are all y∈L of norm ≤ R.

Enumeration searches the whole
tree to compute all leaves, compare
their norm to output a shortest
vector x∈L.

Complexity of Enumeration

The complexity of enumeration is, up to a
polynomial factor, the number of lattice
points in all projected lattices inside the
centered ball of radius R.

This number can be upper bounded, but
worst-case bounds are typically higher
than experimental numbers.

The Gaussian Heuristic

The volume is the inverse density of
lattice points.

For “nice” full-rank lattices L, and “nice”
measurable sets C of Rn:

Card(L ⇥ C) � vol(C)
vol(L)

Validity of the Gaussian Heuristic

Easy to prove for arbitrarily large
balls: 1/vol(L) = limr⟶∞ (number of
lattice points of norm ≤ r)/vol(Ball(0,r))

If μ(L) is the covering radius,

#(L \B(0, R)) vol(B(R+ µ(L)))

vol(L)

Practical Complexity of Enumeration

By the Gaussian heuristic, the number of
lattice points should be
≈∑1≤k≤d vk(R)/vol(πd-k+1(L)), where vk(R) is
the volume of the k-dim ball of radius R.

Intuitively, this should be ok, as while as
each term is very big.

Accuracy of Gaussian Heuristic

Depth k

Log(
Number
Lattice
Points)

Remark

It is not shocking that the Gaussian
heuristic is accurate here: we’re
estimating the number of “short”
vectors in a projected lattice, where
the radius is significantly larger
than the dim-th root of the volume.
This is an exponential number.

Practical Complexity of Enumeration

By the Gaussian heuristic, the number of
lattice points should be
≈∑1≤k≤d vk(R)/vol(πd-k+1(L)), where vk(R) is
the volume of the k-dim ball of radius R.

We can estimate each of this term, using
a modelization of reduced bases.

Shape

For typical reduced bases, the Gram-
Schmidt norms decrease geometrically
in practice: most of the tree nodes are
in middle depths k≈d/2. Their number is
super-exponential.

Gram-Schmidt Shape

Gram-Schmidt log-norms typically form a
straight line: this is Schnorr’s Geometric
Series Assumptions (GSA).

What do we
deduce for the

Gaussian
heuristic?

Enumeration is based on one key idea

Projection to decrease the lattice
dimension

Once parameters are fixed, it is
possible to reasonably estimate the
running time

Take Away

Optimizing the Basis

The basis should be chosen to
minimize ∑1≤k≤d vk(R)/vol(πd-k+1(L))
especially for k≈d/2, i.e. to minimize
vol(b1,…,bd-k) = ||b1*||…||bd-k*||.

In particular, we’d like to minimize
||b1*||…||bd/2*||.

Speeding Up
Enumeration
by Pruning

Speeding Up Enumeration

Assume that we do not need all L∩S:

What if we only need to find one
such vector?

Can we make enumeration faster?

Enumeration with Pruning

Input: a lattice L, a ball S⊆Rn and a
pruning set P⊆Rn.

Output: All points in L∩S∩P.

Started with [ScEu94,ScHo95].

Enumeration with Pruning

Input: a lattice L, a ball S⊆Rn and a
pruning set P⊆Rn.

Output: All points in L∩S∩P.

Pros: Enumerating L∩S∩P can be much
faster than L∩S.

Cons: Maybe L∩S∩P ⊆ {0}. We get nothing.

Analyzing Pruned Enumeration
[GNR10]

More sound than previous analyses:
enumerating L∩S∩P is deterministic.

[GNR10] framework:

The set P is randomized: it depends on a
(random) reduced basis.

The success probability is Pr(L∩S∩P ⊈ {0}).

By the Gaussian heuristic, #(L∩S∩P)
« should » be close to vol(S∩P)/covol(L).

Extreme Pruning [GNR10]

Repeat until success

Generate P by reducing a “random” basis.

Enumerate(L∩S∩P)

Even if Pr(L∩S∩P ⊈ {0}) is tiny, what
matters is the trade-off:
Cost(Enum(L∩S∩P))/Pr(L∩S∩P ⊈ {0})

Two Kinds of Pruning

Continuous Pruning ([GNR10]
generalizing [ScEu94,ScHo95]): P is a
cylinder intersection.

Discrete Pruning ([AoN17] generalizing
[Sc03,FuKa15]): P is a union of cells, in
practice a union of boxes.

Pruned enumeration is based on more
key idea

Slicing the ball in a randomized
manner

Once all parameters are fixed, it is
possible to reasonably estimate the
running time. But difficult to optimize.

Take Away

Cylinder
Pruning

Cylinder Prutning

[ScEu94,ScHo95], revisited in [GNR10].

Idea: random projections are shorter.

We can prune the gigantic tree.

Pruned enumeration cuts
off many branches, by
bounding projections.

Intuition

Enumeration says:
If ||x||≤R, then ||πd+1-k(x)||≤R for all 1≤k≤d

But if you choose x at random from the
ball of radius R, then its projections
πd+1-k(x) are likely to be shorter.

For instance, we would expect
||πd/2(x)||≈R/√2.

Cylinder Pruning

Replace each inequality ||πd-k+1(x)||≤R
by ||πd-k+1(x)||≤Rk R for each index k in
{1,...,d}, where 0<Rk≤1.

The enumeration tree is pruned with P =
{x∈Rd s.t. ||πd-k+1(x)||≤Rk R for 1≤k≤d}. Again,
one searches the tree to find all leaves.

The algorithm is faster because there are
less nodes.

Cylinder-Enumeration Tree

πd(x)
xd-1 xd-1

xd-1
πd(x)
xd-1

xd-1
...

πd-1(x) πd-1(x) πd-1(x) πd-1(x) πd-1(x)
xd-2 xd-2

xd xd xd

πd-2(x) πd-2(x)
...

x

Root

Leaves

each level ||πd-k+1(x)||≤R

is shrunk to ||πd-k+1(x)||≤Rk R

Enumeration with cylinder pruning

The complexity is, again up to a
polynomial factor, a number of lattice
points in projected lattices, but instead of
balls, we have to consider new sets,
whose volume might be harder to
compute.

Balls Replaced
by Cylinder Intersections

More Precisely

The k-dimensional ball of radius R,
is replaced by: {(y1,...,yk)∈Rk s.t. for
all 1≤i≤k, y12+...+yi2 ≤ Ri2 x R2}.

Its volume is Vk(R) times the
probability Pk that for (y1,...,yk)
chosen uniformly at random from
the unit ball, y12+...+yi2 ≤ Ri2 for all
1≤i≤k.

In other words

The heuristic complexity of enumeration
∑1≤k≤d vk(R)/vol(πd-k+1(L)) is reduced to
∑1≤k≤d vk(R)Pk/vol(πd-k+1(L)).

At depth k, the number of nodes is
reduced by the multiplicative factor Pk.

Remark

For fixed i, the probability that for
(y1,...,yk) chosen uniformly at random
from the unit ball, y12+...+yi2 ≤ Ri2 is
easy to compute.

But the joint probability Pk seems
hard in general.

Technical Problem [GNR10]

To analyze and select good parameters for
continuous pruning, we need to estimate
the volume of:

{(y1,...,yn)∈Rn s.t. for all 1≤k≤n, y12+...+yk2
≤ Rk2} for given R1, R2,…, Rn.

This can be done efficiently thanks to
the Dirichlet distribution and well-
chosen polytopes.

Special case: Linear Pruning

An interesting easy case:
Ri=√(i/d).

Then we can prove:

(k/d)k/2 ≤ Pk ≤ k(k/d)k/2

Thus, for k≈d/2, Pk ≈ 1/2d/4

Special cases: The Even Case

k even and R1=R2, R3=R4,...,Rk-1=Rk.

If (y1,...,yk) is chosen uniformly at random
from the unit ball, then (y12+y22, y32+y42,...,
yk-12+yk2) has uniform distribution over a
simplex, due to the Dirichlet distribution.

Then computing Pk is reduced to computing
easy integrals:Z t1

y1=0

Z t2

y2=y1

...

Z t`

y`=y`�1

dy`...dy1

Special cases: The Odd Case

k odd and R1=R2, R3=R4,...,Rk-2=Rk-1,Rk.

Then computing Pk is reduced to computing
(slightly more complex) easy integrals:

Z t1

y1=0

Z t2

y2=y1

...

Z t`

y`=y`�1

p
1� y`dy`...dy1

General Case
The probability Pk can be computed
numerically by Monte Carlo sampling:

Pick many (y1,...,yk) at random from
the unit ball.

Count how many times
y12+...+yi2 ≤ Ri2 for all 1≤i≤k.

This is inefficient if Pk is very small. To
improve efficiency, one can replace balls
by smaller sets of known volume.

General Case

The odd and even cases allow to
compute efficiently an upper bound and
a lower bound for any bounding
function.

Using similar integrals, one can in fact
also compute an arbitrarily good
approximation using efficient Monte-
Carlo sampling.

Optimizing the Basis

The basis should be chosen to minimize
∑1≤k≤d vk(R)Pk/vol(πd-k+1(L)) especially for
k≈d/2, i.e. to minimize vol(b1,…,bd-k)
= ||b1*||…||bd-k*|| because Pk does not depend
on P.

In particular, we’d like againto minimize
||b1*||…||bd/2*||.

Discrete
Pruning

Lattice Partitions

Any partition of Rn=∪t∈T C(t) into
countably many cells (T is countable) s.t.:

the cells are disjoint: C(i)∩C(j) = ∅

each cell contains one and only one
lattice point which can be found
efficiently: given t∈T, one can
efficiently compute L∩C(t).

Lattice Enumeration with
Discrete Pruning [AoN17]

Repeat until success

Select P=∪t∈U C(t) for some finite subset
U⊆T.

Enumerate(L∩S∩P) by enumerating all
C(t)∩L where t∈U.

The running time is essentially
#U / Pr(L∩S∩P ⊈ {0}): we just need to
calculate vol(S∩C(t)).

Fundamental Domain from Bases

Fundamental Domain from Bases

Ex: Fundamental Domains

A fundamental domain of a lattice L is a
measurable subset D⊆Rn s.t. Rn=∪v∈L (v+D)
and the interiors of v+D are disjoint.

Then we can select T=Zn and
C(t) = tB+D where B is a lattice basis,
except that the C(t)’s may overlap at the
frontier. However, we already know the
lattice point tB.

Let b1,…,bn∈Rm.

Its Gram-Schmidt Orthogonalization is
b1*,…,bn*∈Rm defined as:

b1* = b1

For 2≤i≤n, bi* = component of bibi
orthogonal to b1,…,bi-1 = projection of
bi over span(b1,…,bi-1)⊥

Gram-Schmidt
Laplace Cauchy

Ex: Fundamental Domains

To avoid this problem, we choose a set which
is a fundamental domain for two lattices!

Let (b1,…,bn) be a basis of L and (b*1,…,b*n)
be its Gram-Schmidt vectors.

Then D={Σi xib*i s.t. -1/2≤xi≤1/2} is a
fundamental domain for both L and the
Gram-Schmidt lattice L(b*1,…,b*n).

Then we can select T=Zn and C(t) = tB*+D.

The Gram-Schmidt Fundamental
Domain

Ex: Partition with Natural Integers

[FuKa15] implicitly used a variant of this
partition: T=Nn and C((t1,…,tn)) is the
parallelepiped {Σi xib*i s.t. -(tj+1)/2<xj≤-tj/2
or tj/2<xj≤(tj+1)/2} whose volume is covol(L).
Here, the b*i’s are the Gram-Schmidt
vectors of a lattice basis.

The Gram-Schmidt Partition

The « Natural » Partition

Discrete Pruning

Both [Sc03] and [FuKa15] use the
natural partition with some finite set J:

[Sc03] uses essentially J=0n-k-1{0,1}k1
so #J=2k.

[FuKa15] uses a J constructed by an
algorithm and experiments: #J=5x107.

Instead, we suggest to use the J with
the maximal vol(S∩C(t)).

Is it Over?

This discrete pruning is very easy to
implement.

But there is one technical issue: to
estimate the success probability, we need
to approximate vol(S∩C(t)) for many t’s
where:

S is a ball

C(t) is a box, or a union of symmetric
boxes.

Intersection of a Ball with a Box

Let B=unit-ball and H=∏i [αi,βi] be a box.
Compute vol(S∩H).

Asymptotic formula from the central limit
theorem:

Th: If H is ‘balanced’, (||x||2-Ey∈H(||y||2))/
√Vy∈H(||y||2)) converges to N(0,1) when x
is uniform over H.

CLT vs Natural Boxes

Let B=unit-ball and H=∏i [αi,βi] be a box.

In our case, the natural box H is not
balanced, because the bi* typically
decrease geometrically, but the more
reduced the basis, the closer to CLT.

CLT vs Natural Boxes

Natural boxes of
LLL-reduced bases
are not balanced.

CLT vs Natural Boxes

The more reduced the basis,
the closer to CLT

CLT vs Natural Boxes

The higher the dimension,
the further away from CLT

Let B=unit-ball and H=∏i [ai,bi] be a box.
Compute vol(S∩H).

We obtain two exact formulas as infinite
series, by generalizing [CoTi1997] based on
Fourier transforms and Fourier series.

But in practice, our fastest method uses
[Hosono81]’s Fast Inverse Laplace Transform:
less than 1s in dim 100.

Intersection of a Ball with a Box

Accuracy of Predictions

Very good predictions

[Schnorr03] vs [FuKa15]

Distribution of vol(S∩C(i))

Heuristics For Selecting Cells

The exact computation of vol(S∩H) is
« slow ». But there is a good heuristic
method to select good cells: if H=C((t1,…,tn)),
Ex∈H(||x||2) =∑j(3tj2+3tj+1)||bj*||2/12.

Finding all (t1,…,tn) minimizing Ex∈H(||x||2) is
finding the closest lattice points in the GS
lattice inside the positive quadrant. This is
very fast because that lattice has an
orthogonal basis.

Correlation Between Expectation
and Volume

The largest-volume cells

Sums of Volumes
by Statistical Inference

We can compute vol(S∩C(t)), but we
would like to do it for millions of t’s to
approximate ∑t∈Uvol(S∩C(t)).

So we ``select’’ say a few thousands
cells and… extrapolate!

We can get very small errors in
practice, say ≤ 1%.

Optimizing the Basis

The basis should be chosen to minimize
vol(S∩C(t)) for our tags t. Heuristically, this
may be the same as minimizing Ex∈H(||x||2)
=∑j(3tj2+3tj+1)||bj*||2/12.

Thus, we may want to minimize ∑j||bj*||2.

The best bases for discrete pruning may
not be the best bases for cylinder pruning.

Conclusion

Conclusion

Enumeration is the most effective lattice
algorithm in practice to find extremely
short vectors. It can also be used to
approximate with small factors.

But it requires pruning, whose main
technical tool is the ability to
approximate volumes of certain bodies:
cylinder intersections or box-ball
intersections.

Open Problems

Asymptotically, what is the best form
of pruning?

Are there other efficient forms of
pruning, other than cylinder pruning
and discrete pruning?

Cylinder pruning and discrete pruning
can be mixed: is it more efficient?

Conclusion

We introduced enumeration with discrete
pruning, which is an alternative
generalized geometric description of
random sampling [Sc03,BuLu06,FuKa15].

It can be analyzed in the same way as
[GNR10] for enumeration with continuous
pruning: better assumptions, accurate
predictions and hopefully, better
parameters.

Thank you for your attention...

Any question(s)?

