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Schnorr’s Random Sampling [Sc03]

The records [KaTe,KaFu] used a secret 
variant of RSR.

RSR is based on Random Sampling, which 
is not well-understood, and which we 
revisit.



Revisiting and Unifying 
Schnorr’s Algorithms

Cylinder pruning

[SchnorrEuchner94,SchorrHorner95] but analysis not 
satisfactory;

Revisited in [GNR10]: better description led to better 
analysis, which led to much better performances.


Random sampling [Schnorr03, BuLu06, FuKa15, etc.]

Previous analyses arguably not satisfactory: gap 
between analysis and experiments.

Discrete pruning [AoN17] generalizes it and provides a 
[GNR10]-type analysis.



Summary

Enumeration

Enumeration with Pruning


Cylinder Pruning

Discrete Pruning or Box Pruning



Solving SVP 
by 

Enumeration



Enumeration
It is the simplest method to solve hard 
lattice problems: SVP, CVP, etc. Unrelated to 
bounds on Hermite’s constant, but used in 
largest records.

Input: a lattice L and a small ball S⊆Rn s.t. 
#(L∩S) is « small ».

Output: All points in L∩S.

Drawback: the running-time is typically 
superexponential, much larger than #L∩S.



Enumeration
A) Reduce a basis.

B) Exhaustive search all vectors ≤ R by 
enumerating all short vectors in projected 
lattices.


Usually, B) is much more expensive than A). 

If the basis is only LLL-reduced, B) costs       .

[Kannan1983] showed that A) and B) can be done 
in               poly-time operations.

2O(d2)

2O(d lnd)



Enumeration

Idea: projecting a vector can only shorten 
it.

Enumeration is a depth-first search of a 
gigantic tree, to find a shortest vector.

The nb of tree nodes can 
be ``predicted’’ with the 

Gaussian heuristic 
[HaSt07,GNR10]



More precisely…

Consider a lower-triangular matrix:

b1,1

b2,1 b2,2

b3,1 b3,2 b3,3

b4,1 b4,2 b4,3 b4,4

b5,1 b5,2 b5,3 b5,4 b5,5

x1

x2

x3

x4

x5

If norm ≤ R, then

(x5b5,5)2 ≤ R2


(x4b4,4+x5b5,4)2+
(x5b5,5)2 ≤ R2

…

So enumerate x5, 
then x4, etc.




Remember Gram-Schmidt

From d linearly independent vectors, 
GS constructs d orthogonal vectors: 
the i-th vector is projected over 
the  orthogonal complement of the 
first i-1 vectors.  
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Remember Projections

Denote by πi the projection orthogonally 
to b1,...,bi-1.

Then:


 bi* = πi(bi) 

πi(L) is a lattice of dim d-i+1 whose 
volume is vol(L)/(||b1*|| x ... x ||bd-i+1*||) 
= vol(L)/vol(b1,...,bi-1).



Gram-Schmidt = Triangularization

If we take an appropriate orthonormal 
basis,  the matrix of the lattice basis 
becomes triangular.0
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k~b⇤1k 0 0 . . . 0
µ2,1k~b⇤1k k~b⇤2k 0 . . . 0
µ3,1k~b⇤1kµ3,2k~b⇤2kk~b⇤3k . . . 0

... . . . . . . . . . ...
µd,1k~b⇤1kµd,2k~b⇤2k . . . µd,d�1k~b⇤d�1kk~b⇤dk
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Exhaustive Search

Let (b1,b2,...bd) be a reduced basis of L.

Let x=x1b1+x2b2+...+xdbd be a shortest 
vector of L.

Then ||πi(x)||≤R for 1≤i≤d, R=||b1|| or λ1(L).


||πd(x)||≤R implies: |xd|≤R/||bd*|| 

For each value of xd, ||πd-1(x)||≤R  
implies that the integer xd-1 belongs to 
an interval of “small” length. 



Enumeration and Triangularization

Let x=x1b1+x2b2+...+xdbd be a shortest 
vector of L.

Decompose x over the triangular 
representation of L.


Then ||x||≤||b1|| implies: |xd|≤||b1||/||bd*|| 

And so on... each integer xi belongs to 
an interval of “small” length. 



Enumeration Tree

πd(x) 
xd-1 xd-1

xd-1
πd(x) 
xd-1

xd-1
...

πd-1(x) πd-1(x) πd-1(x) πd-1(x) πd-1(x) 
xd-2 xd-2

xd xd xd

πd-2(x) πd-2(x) 
...

x 

Root

Leaves



Enumeration tree

Depth k contains all projected 
lattice points ||πd+1-k(y)|| (y∈L) of 
norm ≤ R.

The leaves are all y∈L of norm ≤ R. 

Enumeration searches the whole 
tree to compute all leaves, compare 
their norm to output a shortest 
vector x∈L.



Complexity of Enumeration

The complexity of enumeration is, up to a 
polynomial factor, the number of lattice 
points in all projected lattices inside the 
centered ball of radius R.

This number can be upper bounded, but 
worst-case bounds are typically higher 
than experimental numbers.



The Gaussian Heuristic

The volume is the inverse density of 
lattice points.

For “nice” full-rank lattices L, and “nice” 
measurable sets C of Rn:

Card(L ⇥ C) � vol(C)
vol(L)



Validity of the Gaussian Heuristic

Easy to prove for arbitrarily large 
balls: 1/vol(L) = limr⟶∞ (number of 
lattice points of norm ≤ r)/vol(Ball(0,r))

If μ(L) is the covering radius,

#(L \B(0, R))  vol(B(R+ µ(L)))

vol(L)



Practical Complexity of Enumeration

By the Gaussian heuristic, the number of 
lattice points should be                         
≈∑1≤k≤d vk(R)/vol(πd-k+1(L)), where vk(R) is 
the volume of the k-dim ball of radius R.

Intuitively, this should be ok, as while as 
each term is very big.



Accuracy of Gaussian Heuristic

Depth k

Log(
Number
Lattice
Points)



Remark

It is not shocking that the Gaussian 
heuristic is accurate here: we’re 
estimating the number of “short” 
vectors in a projected lattice, where 
the radius is significantly larger 
than the dim-th root of the volume. 
This is an exponential number.



Practical Complexity of Enumeration

By the Gaussian heuristic, the number of 
lattice points should be                         
≈∑1≤k≤d vk(R)/vol(πd-k+1(L)), where vk(R) is 
the volume of the k-dim ball of radius R.

We can estimate each of this term, using 
a modelization of reduced bases.



Shape

For typical reduced bases, the Gram-
Schmidt norms decrease geometrically 
in practice: most of the tree nodes are 
in middle depths k≈d/2. Their number is 
super-exponential.



Gram-Schmidt Shape

Gram-Schmidt log-norms typically form a 
straight line: this is Schnorr’s Geometric 
Series Assumptions (GSA).

What do we 
deduce for the 

Gaussian 
heuristic?



Enumeration is based on one key idea

Projection to decrease the lattice 
dimension


Once parameters are fixed, it is 
possible to reasonably estimate the 
running time

Take Away



Optimizing the Basis

The basis should be chosen to 
minimize ∑1≤k≤d vk(R)/vol(πd-k+1(L)) 
especially for k≈d/2, i.e. to minimize 
vol(b1,…,bd-k) = ||b1*||…||bd-k*||.

In particular, we’d like to minimize     
||b1*||…||bd/2*||.



Speeding Up 
Enumeration 
by Pruning



Speeding Up Enumeration

Assume that we do not need all L∩S:

What if we only need to find one 
such vector?

Can we make enumeration faster? 



Enumeration with Pruning

Input: a lattice L, a ball S⊆Rn and a 
pruning set P⊆Rn.

Output: All points in L∩S∩P.


Started with [ScEu94,ScHo95].



Enumeration with Pruning

Input: a lattice L, a ball S⊆Rn and a 
pruning set P⊆Rn.

Output: All points in L∩S∩P.


Pros: Enumerating L∩S∩P can be much 
faster than L∩S.

Cons: Maybe L∩S∩P ⊆ {0}. We get nothing.



Analyzing Pruned Enumeration 
[GNR10]

More sound than previous analyses: 
enumerating L∩S∩P is deterministic.

[GNR10] framework:


The set P is randomized: it depends on a 
(random) reduced basis.

The success probability is Pr(L∩S∩P ⊈ {0}).

By the Gaussian heuristic, #(L∩S∩P) 
« should » be close to vol(S∩P)/covol(L).



Extreme Pruning [GNR10]

Repeat until success

Generate P by reducing a “random” basis.

Enumerate(L∩S∩P)


Even if Pr(L∩S∩P ⊈ {0}) is tiny, what 
matters is the trade-off: 
Cost(Enum(L∩S∩P))/Pr(L∩S∩P ⊈ {0})



Two Kinds of Pruning

Continuous Pruning ([GNR10] 
generalizing [ScEu94,ScHo95]): P is a 
cylinder intersection.


Discrete Pruning ([AoN17] generalizing 
[Sc03,FuKa15]): P is a union of cells, in 
practice a union of boxes.



Pruned enumeration is based on more 
key idea


Slicing the ball in a randomized 
manner


Once all parameters are fixed, it is 
possible to reasonably estimate the 
running time. But difficult to optimize.

Take Away



Cylinder 
Pruning



Cylinder Prutning

[ScEu94,ScHo95], revisited in [GNR10].

Idea: random projections are shorter.

We can prune the gigantic tree.

Pruned enumeration cuts 
off many branches, by 
bounding projections.



Intuition

Enumeration says:                             
If ||x||≤R, then ||πd+1-k(x)||≤R for all 1≤k≤d

But if you choose x at random from the 
ball of radius R, then its projections        
πd+1-k(x) are likely to be shorter.

For instance, we would expect                   
||πd/2(x)||≈R/√2.



Cylinder Pruning

Replace each inequality ||πd-k+1(x)||≤R             
by ||πd-k+1(x)||≤Rk R for each index k in 
{1,...,d}, where 0<Rk≤1.

The enumeration tree is pruned with P = 
{x∈Rd s.t. ||πd-k+1(x)||≤Rk R for 1≤k≤d}. Again, 
one searches the tree to find all leaves.

The algorithm is faster because there are 
less nodes.



Cylinder-Enumeration Tree

πd(x) 
xd-1 xd-1

xd-1
πd(x) 
xd-1

xd-1
...

πd-1(x) πd-1(x) πd-1(x) πd-1(x) πd-1(x) 
xd-2 xd-2

xd xd xd

πd-2(x) πd-2(x) 
...

x 

Root

Leaves

each level ||πd-k+1(x)||≤R 

is shrunk to ||πd-k+1(x)||≤Rk R



Enumeration with cylinder pruning

The complexity is, again up to a 
polynomial factor, a number of lattice 
points in projected lattices, but instead of 
balls, we have to consider new sets, 
whose volume might be harder to 
compute.



Balls Replaced
by Cylinder Intersections



More Precisely

The k-dimensional ball of radius R, 
is replaced by: {(y1,...,yk)∈Rk s.t. for 
all 1≤i≤k, y12+...+yi2 ≤ Ri2 x R2}.

Its volume is Vk(R) times the 
probability Pk that for (y1,...,yk) 
chosen uniformly at random from 
the unit ball, y12+...+yi2 ≤ Ri2 for all 
1≤i≤k.



In other words

The heuristic complexity of enumeration 
∑1≤k≤d vk(R)/vol(πd-k+1(L)) is reduced to      
∑1≤k≤d vk(R)Pk/vol(πd-k+1(L)).

At depth k, the number of nodes is 
reduced by the multiplicative factor Pk.   



Remark

For fixed i, the probability that for 
(y1,...,yk) chosen uniformly at random 
from the unit ball, y12+...+yi2 ≤ Ri2 is 
easy to compute.

But the joint probability Pk seems 
hard in general. 



Technical Problem [GNR10]

To analyze and select good parameters for 
continuous pruning, we need to estimate 
the volume of:


{(y1,...,yn)∈Rn s.t. for all 1≤k≤n, y12+...+yk2 
≤ Rk2} for given R1, R2,…, Rn.

This can be done efficiently thanks to 
the Dirichlet distribution and well-
chosen polytopes.



Special case: Linear Pruning

An interesting easy case:               
Ri=√(i/d).

Then we can prove:


(k/d)k/2 ≤ Pk ≤ k(k/d)k/2 

Thus, for k≈d/2, Pk ≈ 1/2d/4



Special cases: The Even Case

k even and R1=R2, R3=R4,...,Rk-1=Rk.

If (y1,...,yk) is chosen uniformly at random 
from the unit ball, then (y12+y22, y32+y42,..., 
yk-12+yk2) has uniform distribution over a 
simplex, due to the Dirichlet distribution.

Then computing Pk is reduced to computing 
easy integrals:Z t1

y1=0

Z t2

y2=y1

...

Z t`

y`=y`�1

dy`...dy1



Special cases: The Odd Case

k odd and R1=R2, R3=R4,...,Rk-2=Rk-1,Rk.

Then computing Pk is reduced to computing 
(slightly more complex) easy integrals:

Z t1

y1=0

Z t2

y2=y1

...

Z t`

y`=y`�1

p
1� y`dy`...dy1



General Case
The probability Pk can be computed 
numerically by Monte Carlo sampling:


Pick many (y1,...,yk) at random from 
the unit ball.

Count how many times                
y12+...+yi2 ≤ Ri2 for all 1≤i≤k. 


This is inefficient if Pk is very small. To 
improve efficiency, one can replace balls 
by smaller sets of known volume.



General Case

The odd and even cases allow to 
compute efficiently an upper bound and 
a lower bound for any bounding 
function.

Using similar integrals, one can in fact 
also compute an arbitrarily good 
approximation using efficient Monte-
Carlo sampling.



Optimizing the Basis

The basis should be chosen to minimize 
∑1≤k≤d vk(R)Pk/vol(πd-k+1(L)) especially for 
k≈d/2, i.e. to minimize vol(b1,…,bd-k)            
= ||b1*||…||bd-k*|| because Pk does not depend 
on P.

In particular, we’d like againto minimize                
||b1*||…||bd/2*||.



Discrete 
Pruning



Lattice Partitions

Any partition of Rn=∪t∈T C(t) into 
countably many cells (T is countable) s.t.:


the cells are disjoint: C(i)∩C(j) = ∅

each cell contains one and only one 
lattice point which can be found 
efficiently: given t∈T, one can 
efficiently compute L∩C(t). 



Lattice Enumeration with 
Discrete Pruning [AoN17]

Repeat until success

Select P=∪t∈U C(t) for some finite subset 
U⊆T.

Enumerate(L∩S∩P) by enumerating all 
C(t)∩L where t∈U.


The running time is essentially                  
#U / Pr(L∩S∩P ⊈ {0}): we just need to 
calculate vol(S∩C(t)). 



Fundamental Domain from Bases



Fundamental Domain from Bases



Ex: Fundamental Domains

A fundamental domain of a lattice L is a 
measurable subset D⊆Rn s.t. Rn=∪v∈L (v+D) 
and the interiors of v+D are disjoint.

Then we can select T=Zn and             
C(t) = tB+D where B is a lattice basis, 
except that the C(t)’s may overlap at the 
frontier. However, we already know the 
lattice point tB.



Let b1,…,bn∈Rm.

Its Gram-Schmidt Orthogonalization is  
b1*,…,bn*∈Rm defined as:


b1* = b1


For 2≤i≤n, bi* = component of bibi 
orthogonal to b1,…,bi-1 = projection of 
bi over  span(b1,…,bi-1)⊥

Gram-Schmidt
Laplace Cauchy



Ex: Fundamental Domains

To avoid this problem, we choose a set which 
is a fundamental domain for two lattices!


Let (b1,…,bn) be a basis of L and (b*1,…,b*n) 
be its Gram-Schmidt vectors.

Then D={Σi xib*i s.t. -1/2≤xi≤1/2} is a 
fundamental domain for both L and the 
Gram-Schmidt lattice L(b*1,…,b*n).


Then we can select T=Zn and C(t) = tB*+D.



The Gram-Schmidt Fundamental 
Domain



Ex: Partition with Natural Integers

[FuKa15] implicitly used a variant of this 
partition: T=Nn and C((t1,…,tn)) is the 
parallelepiped {Σi xib*i s.t. -(tj+1)/2<xj≤-tj/2 
or tj/2<xj≤(tj+1)/2} whose volume is covol(L). 
Here, the b*i’s are the Gram-Schmidt 
vectors of a lattice basis.



The Gram-Schmidt Partition



The « Natural » Partition



Discrete Pruning

Both [Sc03] and [FuKa15] use the 
natural partition with some finite set J:


[Sc03] uses essentially J=0n-k-1{0,1}k1 
so #J=2k.

[FuKa15] uses a J constructed by an 
algorithm and experiments: #J=5x107.


Instead, we suggest to use the J with 
the maximal vol(S∩C(t)).



Is it Over?

This discrete pruning is very easy to 
implement.

But there is one technical issue: to 
estimate the success probability, we need 
to approximate vol(S∩C(t)) for many t’s 
where:


S is a ball

C(t) is a box, or a union of symmetric 
boxes.



Intersection of a Ball with a Box

Let B=unit-ball and H=∏i [αi,βi] be a box. 
Compute vol(S∩H).

Asymptotic formula from the central limit 
theorem:


Th: If H is ‘balanced’, (||x||2-Ey∈H(||y||2))/
√Vy∈H(||y||2)) converges to N(0,1) when x 
is uniform over H.



CLT vs Natural Boxes

Let B=unit-ball and H=∏i [αi,βi] be a box.


In our case, the natural box H is not 
balanced, because the bi* typically 
decrease geometrically, but the more 
reduced the basis, the closer to CLT.



CLT vs Natural Boxes 

Natural boxes of 
LLL-reduced bases 
are not balanced.



CLT vs Natural Boxes

The more reduced the basis,
the closer to CLT



CLT vs Natural Boxes

The higher the dimension,
the further away from CLT



Let B=unit-ball and H=∏i [ai,bi] be a box. 
Compute vol(S∩H).

We obtain two exact formulas as infinite 
series, by generalizing [CoTi1997] based on 
Fourier transforms and Fourier series.

But in practice, our fastest method uses 
[Hosono81]’s Fast Inverse Laplace Transform: 
less than 1s in dim 100.

Intersection of a Ball with a Box



Accuracy of Predictions

Very good predictions



[Schnorr03] vs [FuKa15]

Distribution of vol(S∩C(i)) 



Heuristics For Selecting Cells

The exact computation of vol(S∩H) is 
« slow ». But there is a good heuristic 
method to select good cells: if H=C((t1,…,tn)), 
Ex∈H(||x||2) =∑j(3tj2+3tj+1)||bj*||2/12. 

Finding all (t1,…,tn) minimizing Ex∈H(||x||2) is 
finding the closest lattice points in the GS 
lattice inside the positive quadrant. This is 
very fast because that lattice has an 
orthogonal basis.



Correlation Between Expectation 
and Volume

The largest-volume cells



Sums of Volumes
by Statistical Inference 

We can compute vol(S∩C(t)), but we 
would like to do it for millions of t’s to 
approximate ∑t∈Uvol(S∩C(t)).

So we ``select’’ say a few thousands 
cells and… extrapolate!


We can get very small errors in 
practice, say ≤ 1%.



Optimizing the Basis

The basis should be chosen to minimize 
vol(S∩C(t)) for our tags t. Heuristically, this 
may be the same as minimizing Ex∈H(||x||2) 
=∑j(3tj2+3tj+1)||bj*||2/12.

Thus, we may want to minimize ∑j||bj*||2.

The best bases for discrete pruning may 
not be the best bases for cylinder pruning.



Conclusion



Conclusion

Enumeration is the most effective lattice 
algorithm in practice to find extremely 
short vectors. It can also be used to 
approximate with small factors.

But it requires pruning, whose main 
technical tool is the ability to 
approximate volumes of certain bodies: 
cylinder intersections or box-ball 
intersections.



Open Problems

Asymptotically, what is the best form 
of pruning?

Are there other efficient forms of 
pruning, other than cylinder pruning 
and discrete pruning?

Cylinder pruning and discrete pruning 
can be mixed: is it more efficient?



Conclusion

We introduced enumeration with discrete 
pruning, which is an alternative 
generalized geometric description of 
random sampling [Sc03,BuLu06,FuKa15].

It can be analyzed in the same way as 
[GNR10] for enumeration with continuous 
pruning: better assumptions, accurate 
predictions and hopefully, better 
parameters.



Thank you for your attention... 

Any question(s)?


