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o Joint work with:

o Yoshinori Aono, published at EUROCRYPT
2017: « Random Sampling Revisited:
Lattice Enumeration with Discrete
Pruning ». Full version on eprint.

o Nicolas Gama and Oded Regey, published
at EUROCRYPT 2010: « Lattice
Enumeration with Extreme Pruning ».



Schnorr’s Random Sampling [Sc03]
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o The records [KaTe,KaFu] used a secret
variant of RSR.

o RSR is based on Random Sampling, which
IS not well-understood, and which we
revisit.



Revisiting and Uniftying
Schnorr’ S Algonthms
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o Cylinder pruning

o [SchnorrEuchner94,SchorrHorner95] but analysis not
satisfactory;

o Revisited in [GNR10]: better description led to better
analysis, which led fo much better performances.

o Random sampling [SchnorrO3, BuLuO6, FuKal5, etc.]

o Previous analyses arguably not satisfactory: gap
between analysis and experiments.

o Discrete pruning [AoN17] generalizes it and provides a
[GNR10]-type analysis.



Summary
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o Enumeration
o Enumeration with Pruning
o Cylinder Pruning

o Discrete Pruning or Box Pruning






s
Enumeration
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oIt is the simplest method to solve hard
lattice problems: SVP, CVP, etc. Unrelated to
bounds on Hermites constant, but used in
largest records.

o Input: a lattice L and a small ball SCR" s.t.
#(LnS) is « small ».

o Qutput: All points in LnS.

o Drawback: the running-time is typically
superexponential, much larger than #LnS.



Enumeration
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o A) Reduce a basis.

o B) Exhaustive search all vectors < R by
enumerating all short vectors in projected
lattices.

o Usually, B) is much more expensive than A).

o If the basis is only LLL-reduced, B) costs 2°(¢")

o [Kannanl1983] showed that A) and B) can be done
in 20(dInd)  poly_time operations.



Enumeration S\
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o Idea: projecting a vector can only shorten
it.

o Enumeration is a depth-first search of a
gigantic tree, fo find a shortest vector:

-" N s -
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The nb of tree nodes can
be “predicted” with the
Gaussian heuristic
[HaSt07,GNRI10]




More precisely...
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o Consider a lower-triangular matrix:

o If norm < R, then

o (xsbss)? ¢ R?

O (X4b4s+x5bs4)%+
(xsbss)? ¢ R?

O (X X J

o SO0 enumerate Xs,
then x., etc.




Remember Gram-Schmidt
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o From d linearly independent vectors,
GS constructs d orthogonal vectors:
the i-th vector is projected over
the orthogonal complement of the
first i-1 vectors.




Remember Projections
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o Denote by 11 the projection orthogonally
to b1,...,bi_1.

o Then:
o bi" = mi(b)

o mi(L) is a lattice of dim d-i+1 whose
volume is vol(L)/(Ilbi" Il x ... x llba-isi 1)
= vol(L)/vol(by,...,bi-1).



Gram-Schmidt = Triangularization
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o If we take an appropriate orthonormal
basis, the matrix of the lattice basis
becomes triangular.

|b* || 0 0 0
paallBi (163 H O 0
U13.1(|07 0

H . Hd.a— 1Hb 1H||b |




Exhaustive Search
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o Let (by,by,...bg) be a reduced basis of L.

o Let x=x1bi+x2bs+...4+4x4bgq be a shortest
vector of L.

o Then ||mi(x)||¢R for 1<i<d, R=||bill or A i(L).

o [lma(x)II<R implies: |xal<R/Ilbg I

o For each value of x4, ||lma-i(x)II<R
implies that the integer x4.1 belongs to
an interval of "small” length.



Enumeration and Triangularization
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o Let x=x1bi+x2bs+...4+x4bgq be a shortest
vector of L.

o Decompose x over the friangular
representation of L.

o Then IIxlI<llbill implies: |xal<llbill/llbg’ll

o And so on... each integer X; belongs to
an interval of "small” length.



Enumeration Tree
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Enumeration tree
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o Depth k contains all projected
lattice points ||mma.-k(Y)ll (yel) of
norm < R.

o The leaves are all yeL of norm < R.

o Enumeration searches the whole
tree to compute all leaves, compare
their norm to output a shortest
vector xeL.



Complexity of Enumeration
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o The complexity of enumeration is, up to a
polynomial factor, the number of lattice
points in all projected lattices inside the
centered ball of radius R.

o This number can be upper bounded, but
worst-case bounds are typically higher
than experimental numbers.



The Gaussian Heuristic
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o The volume is the inverse density of
lattice points.

o For "nice” full-rank lattices L, and "nice”
measurable sets C of R™

Card(LN () =~ —

vol(C')
vol(L)




Validity of the Gaussian Heuristic
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o Easy to prove for arbitrarily large
balls: 1/vol(L) = lim—o (number of
lattice points of norm < r)/vol(Ball(O,r))

oIf p(L) is the covering radius,

vol(B(R + u(L)))
vol(L)

#(LNB(O,R)) <



Practical Complexity of Enumeration
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o By the Gaussian heuristic, the number of
lattice points should be
x31ked VK(R)/VOl(1Ta-k+1(L)), where vi(R) is
the volume of the k-dim ball of radius R.

o Intuitively, this should be ok, as while as
each term is very big.



Accuracy of Gaussian Heuristic
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Remark
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o It is not shocking that the Gaussian
heuristic is accurate here: we're
estimating the number of “short”
vectors in a projected lattice, where
the radius is significantly larger
than the dim-th root of the volume.
This is an exponential number.



Practical Complexity of Enumeration
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o By the Gaussian heuristic, the number of
lattice points should be
x31ked VK(R)/VOl(1Ta-k+1(L)), where vi(R) is
the volume of the k-dim ball of radius R.

o We can estimate each of this term, using
a modelization of reduced bases.



Shape
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o For typical reduced bases, the Gram-
Schmidt norms decrease geometrically
in practice: most of the tree nodes are
in middle depths k=d/2. Their number is
super-exponential. -

eoee
QQQQQQQQ
L[] Qe
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20
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Gram-Schmidt Shape
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o Gram-Schmidt log -norms ’ryplcally Form a
straight line: this is Schnorrs Geometric
Series Assumptions (GSA).

What do we
deduce for the
Gaussian
heuristic?



~ lil Take Aw ay
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o Enumeration is based on one key idea

o Projection to decrease the lattice
dimension

o Once parameters are fixed, it is
possible to reasonably estimate the
running time



Optlmlzmg the Basis
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o The basis should be chosen to
minimize Zi«<d Vk(R)/vol(mmg-k+1(L))
especially for k=d/2, i.e. to minimize
vol(by,...,ba-k) = llbyIl...1Iba-i 11

o In particular, wed like to minimize
by Ml...1lba2 .



Speeding Up
Enumeration

by Pruning




Speeding Up Enumeration
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o Assume that we do not need all LnS:

o What if we only need to find one
such vector?

o Can we make enumeration faster?



Enumeration with Pruning
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o Input: a lattice L, a ball SCR" and a
pruning set PCR".

o Output: All points in LnSnP.

o Started with [SCEu94,ScH095].



Enumeration with Pruning
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o Input: a lattice L, a ball SCR" and a
pruning set PCR".

o Output: All points in LnSnP.

o Pros: Enumerating LnSnP can be much
faster than LnS.

o Cons: Maybe LnSnP < {0}. We get nothing.



Analyzing Pruned Enumeration
[GNRIO]
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© More sound than previous analyses:
enumerating LnSnP is deferministic.

o [GNR10] framework:

o The set P is randomized: it depends on a
(random) reduced basis.

o The success probability is Pr(LnSnP ¢ {0}).

o By the Gaussian heuristic, #(LnSnP)
« should » be close to vol(SnP)/covol(L).



Extreme Prumng [GNRlO]
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o Repeat until success
o Generate P by reducing a “random” basis.

o Enumerate(LnSnP)

o Even if Pr(LnSnP ¢ {0}) is tiny, what
matters is the trade-off:
Cost(Enum(LnSnP))/Pr(LnSnP ¢ {0})



Two Kinds of Pruning
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o Continuous Pruning ([GNRI1O]
generalizing [ScCEu94,ScH095]): P is a
cylinder intersection.

-
|

) S
o Discrete Pruning ([AoN17] generalizing
[Sc03,FuKalb]): P is a union of cells, in

practice a union of boxes.



<L l!l Take Away
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o Pruned enumeration is based on more
key idea

o Slicing the ball in a randomized
manner

o Once all parameters are fixed, it is
possible to reasonably estimate the
running time. But difficult to optimize.
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o [ScEu94,ScH095], revisited in [GNR10].

o Idea: random projections are shorter.
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o We can prune the gigantic tree.

& w Pruned enumeration cuts
‘ off many branches, by
bounding projections.



Intuition
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o Enumeration says:
If |IxlIgR, then [lma.-k(X)II<R for all 1<ksd

o But if you choose x at random from the
ball of radius R, then its projections
ma+1-k(x) are likely to be shorter.

o For instance, we would expect
[lra2(x)lI=R/ /2.



Cyhnder Prumng
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o Replace each inequality |Ima-k.1(x)II<R
by |lmmd—+1(X)lI<Rk R for each index k in
{1,...,d}, where O<R«l.

o The enumeration tree is pruned with P =

ixeR? s.t. ||maks1(X)lI<Rk R for 1<k<d}. Again,
one searches the tree to find all leaves.

o The algorithm is faster because there are
less nodes.



Cylinder—Enumeration Tree
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Enumeration with cylinder prumng
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o The complexity is, again up to a
polynomial factor, a number of lattice
points in projected lattices, but instead of
balls, we have fo consider new sets,
whose volume might be harder fo
compute.



Balls Replaced
by Cylinder Intersections
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More Precisely
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o The k-dimensional ball of radius R,

is replaced by: {(yi,...,.yx)eR¥ s.t. for
all 1<i<k, yi%+...4+Vvi® < Ri® x R?}.

oIts volume is Vk(R) times the
probability Px that for (yi,...,yk)
chosen uniformly at random from
the unit ball, yi%+...+yi? < Ri? for all
1<i<k.



In other words
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o The heuristic complexity of enumeration
21cked VK(R)/Vol(4-k+1(L)) is reduced to
21cked VK(R)Pr/vol(11a-k+1(L)).

o At depth k, the number of nodes is
reduced by the multiplicative factor Px.



Remark
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o For fixed i, the probability that for
(y1,...,¥x) chosen uniformly at random
from the unit ball, yi®+..+yi% < R? is
easy to compufte.

o But the joint probability Pk seems
hard in general.



Technical Problem [GNR10]
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o To analyze and select good parame’rers for
continuous pruning, we need to estimate
the volume of:

o {(y1,...,¥n)ER" s.t. for all 1<ksn, yi2+...+Yi?
< R4} for given Ry, R3,..., Rq.

o This can be done efficiently thanks to
the Dirichlet distribution and well-
chosen polytopes.



Special case: Linear Pruning
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o An interesting easy case:

Ri=A/(i/d).
o Then we can prove:
o (k/d)*/2 < Py < k(k/d)+/2
o Thus, for kxd/2, Px =~ 1/24/



Special cases: The Even Case

® k even and R1—R2, R3=R4, ,Rk 1-Rk

o If (vyi,...,¥x) is chosen uniformly at random
from the unit ball, then (yi2+y22, y32+y4?,..,
Vk-12+Yk?) has uniform distribution over a
simplex, due to the Dirichlet distribution.

o Then computing Pk is reduced to computing
easy infegrals; -

1 ty
/ / / dyy...dyq
y1=0 Jy2=y1 Ye=Ye—1



Special cases: The Odd Case
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ok odd and R1=R2, R3=R4,...,R|<_2=Rk_1,R|<.

o Then computing Pk is reduced fo computing
(slightly more complex) easy integrals:

t1 to 1,
/ / / \/1 — Yedyy...dy;
y1=0 Jya=uy1 Ye=Ye—1




General Case
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o The probability Pk can be compu’red
numerically by Monte Carlo sampling:

o Pick many (yi,...,.yx) at random from
the unit ball.

o Count how many times
Vic+...4Yi¢ < R;i? for all 1<ick.

o This is inefficient if Pk is very small. To
improve efficiency, one can replace balls
by smaller sets of known volume.



General Case

, . ‘ ] 4 ST P Peop e P S & 2 ‘ . 2 o i
Wm&mmymm.uﬁm " IR e L ST .ad»\..u\c,,\&“;t’,w R P Sy Bl I T %

o The odd and even cases allow to
compute efficiently an upper bound and
a lower bound for any bounding
function.

o Using similar integrals, one can in fact
also compute an arbitrarily good
approximation using efficient Monte-
Carlo sampling.



Optlmlzmg the Basis

Mmm&mm’ymm. m.‘-— TN L gl e ‘K_ fYe "Liignrd T2 s T .N\C;K& - ww%%m

o The basis should be chosen to minimize
21¢ked VK(R)Pk/vol(1a-k+1(L)) especially for
kx=d/2, i.e. to minimize vol(b;,...,bd-k)
= |lby |l...IIba—" || because P« does not depend
on P.

o In particular, wed like againto minimize
by Ml...1lbay2 I



Discrete
Pruning




[ attice Partitions
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o Any partition of R"=utcr C(t) into
countably many cells (T is countable) s.t.:

o the cells are disjoint: C(i)nC(j) = @

o each cell contains one and only one
lattice point which can be found
efficiently: given t€T, one can

efficiently compute LnC(t).



Lattice Enumeration with
Dlscrete Prumng [AON17]
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o Repeat un’rll success
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o Select P=uicy C(1) for some finite subset
UCT.

o Enumerate(LnSnP) by enumerating all
C(t)nL where teU.

o The running time is essentially
#U / Pr(LnSnP ¢ {0}): we just need to

calculate vol(SnC(1)).



Fundamental Domain from Bases
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Fundamental Domain from Bases
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Ex: Fundamental Domains
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o A fundamental domain of a lattice L is a

measurable subset DCR" s.t. R"=uyc (V+D)
and the interiors of v+D are disjoint.

o Then we can select T=Z" and
C(t) = tB+D where B is a lattice basis,
except that the C(t)s may overlap at the
frontier. However, we already know the
lattice point 1B.



& Gram- Schmlth G}
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o Its Gram-Schmidt Orthogonalization is

b,....bn €ER™ defined as: i
O bl* = bl ,,,",

o For 2¢i<n, bi = component of bib,i
orthogonal to b;,...,bi.i = projection of
bi over span(by,...,bi.1)"



Ex: Fundamental Domains
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o To avoid this problem, we choose a set which
iIs a fundamental domain for two lattices!

oLet (by,... bn) be a basis of L and (b*y,...,b*,)
be its Gram-Schmidt vectors.

o Then D={2X; xib*; s.t. -1/2<xi<1/2} is a

fundamental domain for both L and the
Gram-Schmidt lattice L(b*y,...,.b*n).

o Then we can select T=Z" and C(t) = tB*+D.



The Gram-Schmidt Fundamental

Domaln
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Ex: Partition with Natural Integers
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o [FuKal5] implicitly used a variant of this

partition: T=N" and C((ty,...,tn)) is the
parallelepiped {2 xib*i s.t. —(t;+1)/2<x;<-1;/2

or t;/2<x;s(tj+1)/2} whose volume is covol(L).
Here, the b*s are the Gram-Schmidt
vectors of a lattice basis.



The Gram-Schmidt Partition
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The « Natural » Partition
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Discrete Pruning
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o Both [Sc03] and [FuKalS] use the
natural partition with some finite set J:

o [Sc03] uses essentially J=0"k-10,1} 1
so #J=2k.

o [FuKal5] uses a J constructed by an
algorithm and experiments: #J=5x10".

o Instead, we suggest fo use the J with
the maximal vol(SnC(1)).



Is 1t Over?
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o This discrete pruning is very easy to
implement.

o But there is one technical issue: to
estimate the success probability, we need
to approximate vol(SnC(t)) for many ts

where:

AP
oS is a ball \ 4
o C(t) is a box, or a union of symmetric

boxes.



Intersection of a Ball with a Box
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o Let B=unit-ball and H=TTi [, Bi] be a box.
Compute vol(SnH).

o Asymptotic formula from the central limit
theorem:

o Th: If H is ‘balanced’, (|IxI|12-Eyen(llyll2))/
~Vyer(llyll?)) converges to N(0,1) when X
is uniform over H.



CLT vs Natural Boxes
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o Let B=unit-ball and H=TTli [, Bi] be a box.

o In our case, the natural box H is not
balanced, because the b* typically
decrease geometrically, but the more
reduced the basis, the closer to CLT.



dist of Y (dim=100, u=10, LLL-reduced) -
N(0.1) ——

Natural boxes of
LLL-reduced bases
are not balanced.
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The more reduced the basis,
the closer to CLT
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The higher the dimensi ~. “
the further away from CLT




Intersection of a Ball with a Box
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o Let B=unit-ball and H=Tl; [a;,bi] be a box.
Compute vol(SnH).

o We obtain two exact formulas as infinite
series, by generalizing [CoTil997] based on
Fourier transforms and Fourier series.

o But in practice, our fastest method uses
[Hosono81]s Fast Inverse Laplace Transform:
less than 1s in dim 100.









Heuristics For Selecting Cells
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o The exact computation of vol(SnH) is
« slow ». But there is a good heuristic
method to select good cells: if H=C((t,...,tn)),
Excr(lIx112) =2(3t;2+31;+1)llb;*|12/12.

o Finding all (ty,...,tn) minimizing Excn(lIxII?) is
finding the closest lattice points in the GS
lattice inside the positive quadrant. This is
very fast because that lattice has an
orthogonal basis.



Correlation Between Expectation
and Volume
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The largest-volume cells



& d Sums of Volumes
A by Statlstleal Inference
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o We can compute vol(SnC(t)), but we

would like to do it for millions of ts to
approximate Zicuvol(SnC(t)).

o So we “select” say a few thousands
cells and... extrapolate!

o We can get very small errors in
practice, say < 1%.



Optlmlzmg the Basis
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o The basis should be chosen to minimize
vol(SnC(t)) for our tags t. Heuristically, this

may be the same as minimizing Exen(lIxI|?)
=3,(3t;2+31;+1)lIb;*]I3/12.

o Thus, we may want to minimize 3;l||b;*|l2.

o0 The best bases for discrete pruning may
not be the best bases for cylinder pruning.



Conclusion




Conclusion
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o Enumeration is the most effective lattice
algorithm in practice to find extremely
short vectors. It can also be used to
approximate with small factors.

o But It requires pruning, whose main
technical tool is the ability to
approximate volumes of certain bodies:
cylinder intersections or box-ball
Intersections.



Open Problems
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o Asymptotically, what is the best form
of pruning?

o Are there other efficient forms of
pruning, other than cylinder pruning
and discrete pruning?

o Cylinder pruning and discrete pruning
can be mixed: is it more efficient?



Conclusion
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o We introduced enumeration with discrete
pruning, which is an alternative
generalized geomeftric description of
random sampling [Sc03,BuLu06,Fukal5].

oIt can be analyzed in the same way as
[GNR10] for enumeration with continuous
pruning: better assumptions, accurate
predictions and hopefully, better
parameters.



Thank you for your attention...
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Any question(s)?



